
JOURNAL OF CQMPUTATIONAL PHYSICS 15, 413-420 (1974)

amputation of a Class of
Phase-integral A

Ii. Performance of TRlGMA

A previous paper [I] has set out the details of the phase-integral approximation
and the symbolic computing (SC) of its special functions Yzzn through the 20th.
order. Here we describe the characteristics of the computation itself, and make
recommendations about how to present the results of any similar computati.on in
the future. We consider this issue because, although the Y-function computation
has aroused much interest [2]-[8] among designers of SC systems, comparison of
the performances of different systems are di@icult for the nonspecialist in the
absence af agreed conventions of presentation. In particular, no two trials of
different systems have been run for Refs. [2]-[S] in the sa e place on the same
computer. We present comparisons of three systems which we have been able to
run on a CDC 6600 computer (while noting that Sundblad 191 has recently com-
pleted an excellent two-computer study of several systems which reaches some
conclusions similar to our own). We have chosen them to reflect three differen.t
approaches to SC which are implicit in the range of available systems and languages.

The phase-integral approximation [lo] solves the differential equation

to any desired accuracy in the small parameter A. Ref. [l] gives the details of the
computation of each Y,, from the recurrence relation which follows the substitu-
tion of Eqs. (2) and (3) into Eq. (I), where the two independent solutions sf Eq. (?)
have the form

and

In terms of

Eo = (&)3’2 -g (&yz c-9

413
Copyright 0 1974 by Academic Press, Inc.
A31 rights of reproduction in any form reserved.

414 CAMPBELL AND JEFFERYS

and

(
h d”

Em = ___
Q(z) dz Co ’ 1 (5)

some of the low-order expressions are

Y, = SE0

y, = -g (co2 + 4
Y, = & (2c03 + BESET + 5Q + EJ

Values up to Y,, have been published [l], but there are reports of computations
through Yzg by Horowitz and Siegel (81, Y,, by Bourne [3], and Y,, by Brown and
Hall [2].

The lengths L(2n) of expressions for Y,, grow rapidly as n increases. For the
earlier paper [l], a symbolic program which fitted polynomials to difference tables
produced an answer for the lengths (based on results through rz = 10) in which the
leading term was .n . 2 3 However, this was quoted only as a programming achieve-
ment, and labelled “lower bound” because it did not display the exponential
(rather than power-law) behaviour which has been characteristic of symbolic
computations in physics. An exact determination of the length is not difficult: from
Eqs. (4) and (5) it follows that E, is of order h 2m+2, and the order of any term in
Y,, must be X2n, so that what is needed is a measure of all the partitions of 212 over
the exponents, omitting 1 from the partitions because there is no factor that
contributes exactly one power of h. But the number of these latter partitions must
be just p(2n - I), because each such partition of 2n to be excluded can be formed
if we add 1 to some partition of 2n - 1. Hence

L(2n) = ~(212) - p(2n - 1) (6)

An approximation to L good for all but small n is

L(2n) m (1/82/T) [(cd& - l)/n(2n - I)] e2c2/< c = nj2/7. (7)

The leading asymptotic value of L(2n) quoted by Brown and Hall [2] is contained
in Eq. (7). Bourne’s discussion [3] of the problem implies that he is aware of
Eqs. (6) and (7). Brown and Hall mention “about 1500 terms” in storage after the
computation of Yz2: Eq. (6) gives 1507.

With these properties for the Y functions, it is necessary to be careful before
selecting a method for practical computations to high values of n. Here, the history
of improvements in algorithms may be of interest. The original recurrence [lo] for
Yz,, contained rational-number coefficients and a quadrilinear sum in the Y,,
(m -C n), both of which made strong demands on computing time and storage.

PHASE-INTEGRAL APPROXIMATIBN 415

Sundblad [7] rewrote the recurrence to remove numerical de~on~~~at5~s, and found
an immediate improvement of 35 % in speed. Finally, ourne 133 used two inter-
linked recurrences in which only bilinear factors occurred, and showed that the

ng in time was about 52 %.
ased on our experiences, we now make several suggestions about the presenta-

tion of results f~or benchmark SC problem. We begin with two global s~~~est~o~s~
of which the first is justified by our comments ~mn~ediately above.

(1.1) Following the proposal of a probiem, there should be a relaxation time
during which a fastest algorithm for computation is sought. Then, all systems are
enabled to compete with the help of the same algorithm.

(1.2) The runs of all competing systems should be on a computer of the same
type. This removes all complications which arise from the simple use of the memory
cycle time as a means of normalizing computing times from diEerent machines, as
well as the complications based on differences in instruction sets and in the opera-
tion of hardware. Now that there are versions of all major SC systems for, e.g., the
I 370/165 and CDC 6600 computers, the suggestion ceases to be Utopian.

xt, we propose some categories of data for reporting along with the solutions
of test problems:

(2.1) ‘The time t, taken for a program to run to a ~redeterm~~~d point (e.g. to a
given value of N in (3)) is obviously basic to any discussion of ~e~forrna~~e~
recommend that intermediate times for the compilation or equivalent
of the program, and for the completion of each order or stage, sho
recorded.

(2.2) Now that many systems are freely available to all comers, it is of
importance for a newcomer to know how easy it is to get the best out of any given
system. A collection of values of t, may not always be helpful for this purpose,
because in the past almost all values of t, have referred to the performance of
programs written by the designers of the systems. ne possible way la

identify hidden subtleties is to ask a programmer removed from the design of a
system to write a program in that system, and to have it run to the same
in (2.1). The resulting time, t, , ce of information, more sa if it
represents the average over the

(2.3) A measure of the time spent in drafting, writing and debugging
is a further independent measure of the performance of a s
possible to record this time for a given system and problem,
quoted. For the same reason as in (2.2), separate times f, for a designer or one of
his associates and t, for a mean nondesigner will be helpful.

(2.4) Even if (2.3) is too hard to organize, it may be easy to record an approxi-
mate measure of the preliminary effort in the form of the number of deb~g~~~~
runs required to achieve an error-free program which is ready for a final run to

416 CAMPBELL AND JEFFERYS

generate the smallest possible demonstration value of t, or tl . Again, separate
values n2 for a designer and rza for another programmer are desirable.

(2.5) At each stage of the computation for which an intermediate time is noted
according to (2.1), the total number of words of storage occupied by the system,
program and working space should also be noted.

(2.6) If the program for a given problem is not too long, a listing of the program
can be of value. However, this is secondary to the question of how the program
treats the unusual features (if any) of a problem. For example, in the present case,
the compact notation of Eqs. (4) and (5) hides a small SC sub-problem. The Y
functions are determined by differentiation, as Eq. (5) shows. Because of (5),

and

I
%n = %a+1 (8)

(GnPY = P4?%+1 I (%kd = %+1~?c + %n~h?fl (9)

for any p, m and k. While (8) is a “derivative”, it does not fit the usual definition
well enough for the standard dxerentiation functions of most SC systems to be
used. Thus one may be tempted to fall back on the systems’ facilities for substitu-
tion. If this is done, however, the high-speed operation of the chain rule is lost,
even though the repeated use of the chain rule of Eq. (9) is at the heart of the
computation. We would extend the definition of “unusual features” to cover
anything which is responsible for making to significantly less than tl

Our presentation of results is divided into the categories mentioned above.
Computation in each case is based on the slow algorithm utilizing substitution of
Eqs. (3) and (2) into Eq. (l), because this is the only algorithm common to the
previous comments [2-4, 6-81 about performance. All information has been
recorded on a CDC 6600 computer, unless otherwise stated. The presentation is
preceded by remarks about each of the three systems or languages.

TRIGMAN [ll] is specifically built to manipulate series such as the Y,, func-
tions. It represents a type of system which is specialized to the job in hand, in this
case. Alternatively, it is an example of a system whose syntax resembles that of
FORTRAN. (Indeed, to the casual user it “is” FORTRAN, with minor additions).

SYMBAL [12] is a general-purpose SC system, which the user must specialize
to his needs by writing these into his own program. Alternatively, it is an exemplary
ALGOL-like system.

Thirdly, we have taken the language LISP [13], which is not a “system” at all,
but which acts as a base for several systems, including REDUCE [4] and
SCRATCHPAD [6]. Thus we have to write everything, including the differen-
tiation functions, from the ground up for this (and each) special case. We believe
that LISP is so general for SC that it can always be used with success for problems
which are intractable in the polynomial-handling systems.

PHASE-INTEGRAL APPR~X~MAT~O~ 417

(2.1) and (2.2): The timings for each of the three choices are shown in Table 1.
The values of t, refer to our own efforts, and 2, to those of volunteers.
give a t, column for LISP, as (2.4) explains below. The relatively early version 1,lE
of SYMBAL was used for t, and t, . There is now a later version 2.D. Dr. M. Engeli
has kindly run the problem in this version on the Control Data computer

C 4500) of the FIDE%Rechenzentrum in Zurich. The values t,, are the
times for his computation divided by 2.2, a factor which describes well his
experiences of the differences in SYMBAL between the Zurich and Texas eom-
puters.

TABLE I

Computing Times, in Seconds, for Each Stage of the Y Problem. The Vaiues for Each Order 21-e

Cumulative Times from the Start of the Computation of the Y Functions, but Exclnding
Compilation, Which is Given First as a Separate Item.

STAGE TRIGMAN LF;SP

“Compiie”
I%=2
f2=3
n=4
.?2=5
l-Z=6
M=l
n=8
a=9
n = 10

18.954 18.471
0.278 0.259
0.767 0.812
I.463 1.944
2.406 3.582
3.828 5.603
6.290 9.408

IO.666 16.032
17.975 21.194
30.991 45.897

0.350 0.447
0.091 0.069
0.322 0.287
0.945 0.888
2.323 2.280
5.929 6.040

- 152339
44.571

-

0.429 31.642
0.099 0.106
0.420 0.631
1.183 1.522
2.953 3.337
7.930 6.814

19.214 18.829
57.681 86.190

Each computation except that reported by Dr. Engeli is cut off in Table I after
the highest order reached without excessive garbage collections or aut
arguments with our operating system. This number is in itself a measure
formance.

F ble I, it appears that “expert knowledge” increases the running speed
of a AL program by 25 % and a TRIGMAN program by about 30 %. Even
for unrelated problems, we observe that this percentage increases linearly with the
amount of storage needed to hold a system. The estimate, which may be a useful
rule of thumb, is supported by the idea that the number of idiosyncrasies which

esigner can exploit best may be simpl roportional to the length of
system. -4s a guide to the scale, the system TR AN occupies about 1425
of CD6 6400 storage.

5w5/3-9

418 CAMPBELL AND JEFFERYS

(2.3) and (2.4): Unfortunately we had already finished the drafting and debug-
ging of our first program before (2.3) occurred to us. As we were not able to
unlearn what we had learned about the problem, we considered that any value oft,
would have been too biased for comparison with volunteers’ values oft, . Therefore
we have only recorded numbers for n2 and ng .

TABLE II

Numbers of Attempts Needed to Produce an Error-Free Final Program for the Y Problem in
Each Case. The Number n, Refers to the Work of the Authors, and zz3 to the Work of Volunteers.

TRIGMAN SYMBAL

% f% % n3

9 12 9 I

LISP

112 n3

12 >20

Table II gives a reasonable impressionistic picture of the advantages of special
knowledge about the three alternatives. The numbers for SYMBAL reflect an
unhappy fixation of one of us in shortening the loop for quadrilinear sums. With
Dr. Engeli’s program also before us, we conclude that special knowledge of
SYMBAL confers no advantage over the person who has recently learned
SYMBAL in basic courses-a strong recommendation for the nonspecialist. The
two numbers for LISP cannot be compared, because the sole volunteer gave up
after 20 unsuccessful tries. Nevertheless, the finite value of n2 shows that LISP is
still a viable last resort if attempts to fit a problem into a higher-level SC system
fail.

(2.5) In the absence of good diagnostics in the three cases, we report only total
storage occupancy of system, program and working space. For n = 8, which is a
representative example, the numbers of words required are: 29888 (TRIGMAN),
65536 (SYMBAL), 73728 (LISP). To improve the information available under this
heading, we would like to have available for all systems the storage-measurement
capabilities for CAMAL described by Fitch and Garnett [14].

(2.6) The “unusual feature” of the Y-problem is contained in Eqs. (8) and (9). In
both TRIGMAN and SYMBAL, we have had to mix substitution with differen-
tiation. Thus, to represent the effect of Ed’ = By on some Y, we write

ES*DERIV(Y,E4)

in TRIGMAN. Each specific E-quantity must be written out separately. SYMBAL
improves on this situation by allowing subscripted variables, e.g.

DY[M] := “FOR” J := 0:2*(M-1) ‘“SUM” E(J+l) * “D” E(J) $ Y[M]

PHASE-INTEGRAL APPROXEMATION 419

for a single derivative. In LISP, the lack of ‘“system” s~~~rstr~~~ture ajlows us ho
make the optimum solution to the difficulty: we merely add one short line to our
ditferentiat.ion function to incorporate Eq. (S), e.g.

((EQ (CAR Y) (QUQTE E)) (CONS (CA n B>s

and the chain-rule section of the function a~tornat~~~~~~ deals with Eq. (9).
Our conclusions divide into two parts. For the designers of

conclusions are expressed in the recommendations above. For intending users of
SC systems, we have stated the three classes of tool presently available (special-
purpose systems, general-purpose systems, %Q sq’stem”-a~ilterrrat~ve~~
~~R~RA~-like systems, ALGOL-like systems, SC languages), and have com-
pared their performance in discussion and in the Tables. Although we have confined
our attention to one computation here, our experience with other computations
has been that they bring out exactly the same types of advantages an
among the three classes. Hence this note should also serve as a general guide to the
alternatives open to casual users in their first encounters with SC.

We thank Dr. M. E. Engeli, Mr. A. Leonhardt, and volunteers from the courses C.S. 340 and
C.S. 345 at the University of Texas for their help in contributing to the Tables. The work outlined
here has been supported in part by the National Science Foundation under grant no. 62-1069
for the development of specialized algebraic programs.

REFERENCES

1. 5. A. CAMPBELL, J. Copnp. Phys. 10 (1972), 308.
2. W. S. BROWN AND A. D. HALL, SZGSAM Bnll. ACM, NO. 24 (1972j, 4.
3. S. R. BOURNE, SZGSAMBull. ACM, No. 24 (1972), 8.
4. A. C. HEART-J, SZGSAM Bull. ACM, No. 24 (1972), 14.
5. D. BARTON AND A. C. HEARN, SZGSAM Bull. ACM, NO, 24 (1972), 15.
6. R. D. JENKS, SIGSAM Bull. ACM, No. 24 (1972), 15.
7. Y. SUNDBLAD, SZGSAM Bull. ACM, No. 24 (1972), 18.
8. E. HOXZOWITZ AND M. SIEGEL, SZGSAM Bull. ACM, No. 24 (1972), 22.
9. Y. SUNDBLAD, “One User’s One-Algorithm Comparison of Six Algebraic Systems OT, the

Y,,-Problem,” Royal Institute of Technology preprint, Stockholm (1973).
10. N. FR~MAN, Ark. Fys. 32 (1966), 541; N. FR~MAN AXD P. 8. FRMAN, Nucl. P&s. A147

(1970), 606.
11. W. H. JEFFBRY~, Celest. Me&. 2 (1970), 474; CeEest. Me& 6 (4972), 117.
12. M. E. I&GUI, Adu. Information Systems Sci. 1 (1969), 117.

420 CAMPBELL AND JEFFERYS

13. J. MCCARTHY et al., “LISP 1.5Programmer’s Manual,“MITPress,Cambridge, Massachusetts,
1965.

14. J. P. FITCH AND D. J. GARNETT, Measurements on the Cambridge Algebra System,
in “Proceedings of the Association for Computing Machinery International Computing
Symposium, Venice,” pp. 139-147, ACM Headquarters, 1972.

RECEIVED: November 7, 1973
J. A. CAMPBELL

King’s College Research Centre, King’s College, Cambridge, England

WILLIAM H. JEFFERYS

Dept. of Astronomy, University of Te.xas at Austin, Austin, Texas 78712

