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amputation of a Class of 
Phase-integral A 

Ii. Performance of TRlGMA 

A previous paper [I] has set out the details of the phase-integral approximation 
and the symbolic computing (SC) of its special functions Yzzn through the 20th. 
order. Here we describe the characteristics of the computation itself, and make 
recommendations about how to present the results of any similar computati.on in 
the future. We consider this issue because, although the Y-function computation 
has aroused much interest [2]-[8] among designers of SC systems, comparison of 
the performances of different systems are di@icult for the nonspecialist in the 
absence af agreed conventions of presentation. In particular, no two trials of 
different systems have been run for Refs. [2]-[S] in the sa e place on the same 
computer. We present comparisons of three systems which we have been able to 
run on a CDC 6600 computer (while noting that Sundblad 191 has recently com- 
pleted an excellent two-computer study of several systems which reaches some 
conclusions similar to our own). We have chosen them to reflect three differen.t 
approaches to SC which are implicit in the range of available systems and languages. 

The phase-integral approximation [lo] solves the differential equation 

to any desired accuracy in the small parameter A. Ref. [l] gives the details of the 
computation of each Y,, from the recurrence relation which follows the substitu- 
tion of Eqs. (2) and (3) into Eq. (I), where the two independent solutions sf Eq. (?) 
have the form 

and 

In terms of 

Eo = (&)3’2 -g (&yz c-9 
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and 

( 
h d” 

Em = ___ 
Q(z) dz Co ’ 1 (5) 

some of the low-order expressions are 

Y, = SE0 

y, = -g (co2 + 4 
Y, = & (2c03 + BESET + 5Q + EJ 

Values up to Y,, have been published [l], but there are reports of computations 
through Yzg by Horowitz and Siegel (81, Y,, by Bourne [3], and Y,, by Brown and 
Hall [2]. 

The lengths L(2n) of expressions for Y,, grow rapidly as n increases. For the 
earlier paper [l], a symbolic program which fitted polynomials to difference tables 
produced an answer for the lengths (based on results through rz = 10) in which the 
leading term was .n . 2 3 However, this was quoted only as a programming achieve- 
ment, and labelled “lower bound” because it did not display the exponential 
(rather than power-law) behaviour which has been characteristic of symbolic 
computations in physics. An exact determination of the length is not difficult: from 
Eqs. (4) and (5) it follows that E, is of order h 2m+2, and the order of any term in 
Y,, must be X2n, so that what is needed is a measure of all the partitions of 212 over 
the exponents, omitting 1 from the partitions because there is no factor that 
contributes exactly one power of h. But the number of these latter partitions must 
be just p(2n - I), because each such partition of 2n to be excluded can be formed 
if we add 1 to some partition of 2n - 1. Hence 

L(2n) = ~(212) - p(2n - 1) (6) 

An approximation to L good for all but small n is 

L(2n) m (1/82/T) [(cd& - l)/n(2n - I)] e2c2/< c = nj2/7. (7) 

The leading asymptotic value of L(2n) quoted by Brown and Hall [2] is contained 
in Eq. (7). Bourne’s discussion [3] of the problem implies that he is aware of 
Eqs. (6) and (7). Brown and Hall mention “about 1500 terms” in storage after the 
computation of Yz2: Eq. (6) gives 1507. 

With these properties for the Y functions, it is necessary to be careful before 
selecting a method for practical computations to high values of n. Here, the history 
of improvements in algorithms may be of interest. The original recurrence [lo] for 
Yz,, contained rational-number coefficients and a quadrilinear sum in the Y,, 
(m -C n), both of which made strong demands on computing time and storage. 
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Sundblad [7] rewrote the recurrence to remove numerical de~on~~~at5~s, and found 
an immediate improvement of 35 % in speed. Finally, ourne 133 used two inter- 
linked recurrences in which only bilinear factors occurred, and showed that the 

ng in time was about 52 %. 
ased on our experiences, we now make several suggestions about the presenta- 

tion of results f~or benchmark SC problem. We begin with two global s~~~est~o~s~ 
of which the first is justified by our comments ~mn~ediately above. 

(1.1) Following the proposal of a probiem, there should be a relaxation time 
during which a fastest algorithm for computation is sought. Then, all systems are 
enabled to compete with the help of the same algorithm. 

(1.2) The runs of all competing systems should be on a computer of the same 
type. This removes all complications which arise from the simple use of the memory 
cycle time as a means of normalizing computing times from diEerent machines, as 
well as the complications based on differences in instruction sets and in the opera- 
tion of hardware. Now that there are versions of all major SC systems for, e.g., the 
I 370/165 and CDC 6600 computers, the suggestion ceases to be Utopian. 

xt, we propose some categories of data for reporting along with the solutions 
of test problems: 

(2.1) ‘The time t, taken for a program to run to a ~redeterm~~~d point (e.g. to a 
given value of N in (3)) is obviously basic to any discussion of ~e~forrna~~e~ 
recommend that intermediate times for the compilation or equivalent 
of the program, and for the completion of each order or stage, sho 
recorded. 

(2.2) Now that many systems are freely available to all comers, it is of 
importance for a newcomer to know how easy it is to get the best out of any given 
system. A collection of values of t, may not always be helpful for this purpose, 
because in the past almost all values of t, have referred to the performance of 
programs written by the designers of the systems. ne possible way la 

identify hidden subtleties is to ask a programmer removed from the design of a 
system to write a program in that system, and to have it run to the same 
in (2.1). The resulting time, t, , ce of information, more sa if it 
represents the average over the 

(2.3) A measure of the time spent in drafting, writing and debugging 
is a further independent measure of the performance of a s 
possible to record this time for a given system and problem, 
quoted. For the same reason as in (2.2), separate times f, for a designer or one of 
his associates and t, for a mean nondesigner will be helpful. 

(2.4) Even if (2.3) is too hard to organize, it may be easy to record an approxi- 
mate measure of the preliminary effort in the form of the number of deb~g~~~~ 
runs required to achieve an error-free program which is ready for a final run to 



416 CAMPBELL AND JEFFERYS 

generate the smallest possible demonstration value of t, or tl . Again, separate 
values n2 for a designer and rza for another programmer are desirable. 

(2.5) At each stage of the computation for which an intermediate time is noted 
according to (2.1), the total number of words of storage occupied by the system, 
program and working space should also be noted. 

(2.6) If the program for a given problem is not too long, a listing of the program 
can be of value. However, this is secondary to the question of how the program 
treats the unusual features (if any) of a problem. For example, in the present case, 
the compact notation of Eqs. (4) and (5) hides a small SC sub-problem. The Y 
functions are determined by differentiation, as Eq. (5) shows. Because of (5), 

and 

I 
%n = %a+1 (8) 

(GnPY = P4?%+1 I (%kd = %+1~?c + %n~h?fl (9) 

for any p, m and k. While (8) is a “derivative”, it does not fit the usual definition 
well enough for the standard dxerentiation functions of most SC systems to be 
used. Thus one may be tempted to fall back on the systems’ facilities for substitu- 
tion. If this is done, however, the high-speed operation of the chain rule is lost, 
even though the repeated use of the chain rule of Eq. (9) is at the heart of the 
computation. We would extend the definition of “unusual features” to cover 
anything which is responsible for making to significantly less than tl 

Our presentation of results is divided into the categories mentioned above. 
Computation in each case is based on the slow algorithm utilizing substitution of 
Eqs. (3) and (2) into Eq. (l), because this is the only algorithm common to the 
previous comments [2-4, 6-81 about performance. All information has been 
recorded on a CDC 6600 computer, unless otherwise stated. The presentation is 
preceded by remarks about each of the three systems or languages. 

TRIGMAN [ll] is specifically built to manipulate series such as the Y,, func- 
tions. It represents a type of system which is specialized to the job in hand, in this 
case. Alternatively, it is an example of a system whose syntax resembles that of 
FORTRAN. (Indeed, to the casual user it “is” FORTRAN, with minor additions). 

SYMBAL [12] is a general-purpose SC system, which the user must specialize 
to his needs by writing these into his own program. Alternatively, it is an exemplary 
ALGOL-like system. 

Thirdly, we have taken the language LISP [13], which is not a “system” at all, 
but which acts as a base for several systems, including REDUCE [4] and 
SCRATCHPAD [6]. Thus we have to write everything, including the differen- 
tiation functions, from the ground up for this (and each) special case. We believe 
that LISP is so general for SC that it can always be used with success for problems 
which are intractable in the polynomial-handling systems. 
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(2.1) and (2.2): The timings for each of the three choices are shown in Table 1. 
The values of t, refer to our own efforts, and 2, to those of volunteers. 
give a t, column for LISP, as (2.4) explains below. The relatively early version 1,lE 
of SYMBAL was used for t, and t, . There is now a later version 2.D. Dr. M. Engeli 
has kindly run the problem in this version on the Control Data computer 

C 4500) of the FIDE%Rechenzentrum in Zurich. The values t,, are the 
times for his computation divided by 2.2, a factor which describes well his 
experiences of the differences in SYMBAL between the Zurich and Texas eom- 
puters. 

TABLE I 

Computing Times, in Seconds, for Each Stage of the Y Problem. The Vaiues for Each Order 21-e 

Cumulative Times from the Start of the Computation of the Y Functions, but Exclnding 
Compilation, Which is Given First as a Separate Item. 

STAGE TRIGMAN LF;SP 

“Compiie” 
I%=2 
f2=3 
n=4 
.?2=5 
l-Z=6 
M=l 
n=8 
a=9 
n = 10 

18.954 18.471 
0.278 0.259 
0.767 0.812 
I.463 1.944 
2.406 3.582 
3.828 5.603 
6.290 9.408 

IO.666 16.032 
17.975 21.194 
30.991 45.897 

0.350 0.447 
0.091 0.069 
0.322 0.287 
0.945 0.888 
2.323 2.280 
5.929 6.040 

- 152339 
44.571 

- 

0.429 31.642 
0.099 0.106 
0.420 0.631 
1.183 1.522 
2.953 3.337 
7.930 6.814 

19.214 18.829 
57.681 86.190 

Each computation except that reported by Dr. Engeli is cut off in Table I after 
the highest order reached without excessive garbage collections or aut 
arguments with our operating system. This number is in itself a measure 
formance. 

F ble I, it appears that “expert knowledge” increases the running speed 
of a AL program by 25 % and a TRIGMAN program by about 30 %. Even 
for unrelated problems, we observe that this percentage increases linearly with the 
amount of storage needed to hold a system. The estimate, which may be a useful 
rule of thumb, is supported by the idea that the number of idiosyncrasies which 

esigner can exploit best may be simpl roportional to the length of 
system. -4s a guide to the scale, the system TR AN occupies about 1425 
of CD6 6400 storage. 

5w5/3-9 
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(2.3) and (2.4): Unfortunately we had already finished the drafting and debug- 
ging of our first program before (2.3) occurred to us. As we were not able to 
unlearn what we had learned about the problem, we considered that any value oft, 
would have been too biased for comparison with volunteers’ values oft, . Therefore 
we have only recorded numbers for n2 and ng . 

TABLE II 

Numbers of Attempts Needed to Produce an Error-Free Final Program for the Y Problem in 
Each Case. The Number n, Refers to the Work of the Authors, and zz3 to the Work of Volunteers. 

TRIGMAN SYMBAL 

% f% % n3 

9 12 9 I 

LISP 

112 n3 

12 >20 

Table II gives a reasonable impressionistic picture of the advantages of special 
knowledge about the three alternatives. The numbers for SYMBAL reflect an 
unhappy fixation of one of us in shortening the loop for quadrilinear sums. With 
Dr. Engeli’s program also before us, we conclude that special knowledge of 
SYMBAL confers no advantage over the person who has recently learned 
SYMBAL in basic courses-a strong recommendation for the nonspecialist. The 
two numbers for LISP cannot be compared, because the sole volunteer gave up 
after 20 unsuccessful tries. Nevertheless, the finite value of n2 shows that LISP is 
still a viable last resort if attempts to fit a problem into a higher-level SC system 
fail. 

(2.5) In the absence of good diagnostics in the three cases, we report only total 
storage occupancy of system, program and working space. For n = 8, which is a 
representative example, the numbers of words required are: 29888 (TRIGMAN), 
65536 (SYMBAL), 73728 (LISP). To improve the information available under this 
heading, we would like to have available for all systems the storage-measurement 
capabilities for CAMAL described by Fitch and Garnett [14]. 

(2.6) The “unusual feature” of the Y-problem is contained in Eqs. (8) and (9). In 
both TRIGMAN and SYMBAL, we have had to mix substitution with differen- 
tiation. Thus, to represent the effect of Ed’ = By on some Y, we write 

ES*DERIV(Y,E4) 

in TRIGMAN. Each specific E-quantity must be written out separately. SYMBAL 
improves on this situation by allowing subscripted variables, e.g. 

DY[M] := “FOR” J := 0:2*(M-1) ‘“SUM” E(J+l) * “D” E(J) $ Y[M] 



PHASE-INTEGRAL APPROXEMATION 419 

for a single derivative. In LISP, the lack of ‘“system” s~~~rstr~~~ture ajlows us ho 
make the optimum solution to the difficulty: we merely add one short line to our 
ditferentiat.ion function to incorporate Eq. (S), e.g. 

((EQ (CAR Y) (QUQTE E)) (CONS (CA n B>s 

and the chain-rule section of the function a~tornat~~~~~~ deals with Eq. (9). 
Our conclusions divide into two parts. For the designers of 

conclusions are expressed in the recommendations above. For intending users of 
SC systems, we have stated the three classes of tool presently available (special- 
purpose systems, general-purpose systems, %Q sq’stem”-a~ilterrrat~ve~~ 
~~R~RA~-like systems, ALGOL-like systems, SC languages), and have com- 
pared their performance in discussion and in the Tables. Although we have confined 
our attention to one computation here, our experience with other computations 
has been that they bring out exactly the same types of advantages an 
among the three classes. Hence this note should also serve as a general guide to the 
alternatives open to casual users in their first encounters with SC. 

We thank Dr. M. E. Engeli, Mr. A. Leonhardt, and volunteers from the courses C.S. 340 and 
C.S. 345 at the University of Texas for their help in contributing to the Tables. The work outlined 
here has been supported in part by the National Science Foundation under grant no. 62-1069 
for the development of specialized algebraic programs. 
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